Wilhelm Burger \cdot Mark J. Burge

Principles of Digital Image Processing

Advanced Methods

With 129 figures, 6 tables and 46 algorithms

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

This is the 3^{rd} volume of the authors' textbook series on Principles of Digital $Image\ Processing$ that is predominantly aimed at undergraduate study and teaching:

Vol. 1: Fundamental Techniques,

Vol. 2: Core Algorithms,

Vol. 3: **Advanced Methods** (this volume).

While it builds on the previous two volumes and relies on the their proven format, it contains all new material published by the authors for the first time. The topics covered in this volume are slightly more advanced and should thus be well suited for a follow-up undergraduate or Master-level course and as a solid reference for experienced practitioners in the field.

The topics of this volume range over a variety of image processing applications, with a general focus on "classic" techniques that are in wide use but are at the same time challenging to explore with the existing scientific literature. In choosing these topics, we have also considered input received from students, lecturers and practitioners over several years, for which we are very grateful. While it is almost unfeasible to cover all recent developments in the field, we focused on popular "workhorse" techniques that are available in many image processing systems but are often used without a thorough understanding of their inner workings. This particularly applies to the contents of the first five chapters on automatic thresholding, filters and edge detectors for color images, and edge-preserving smoothing. Also, an extensive part of the book is devoted to David Lowe's popular SIFT method for invariant local feature detection, which has found its way into so many applications and has become a standard tool in the industry, despite (as the text probably shows) its inherent sophistication and complexity. An additional "bonus chapter" on Synthetic

Gradient Noise, which could not be included in the print version, is available for download from the book's website.

As in the previous volumes, our main goal has been to provide accurate, understandable and complete algorithmic descriptions that take the reader all the way from the initial idea through the formal description to a working implementation. This may make the text appear bloated or too mathematical in some places, but we expect that interested readers will appreciate the high level of detail and the decision not to omit the (sometimes essential) intermediate steps. Wherever reasonable, general prerequisites and more specific details are summarized in the Appendix, which should also serve as a quick reference that is supported by a carefully compiled index. While space constraints did not permit the full source code to be included in print, complete (Java) implementations for each chapter are freely available on the book's website (see below). Again we have tried to make this code maximally congruent with the notation used in the text, such that readers should be able to easily follow, execute and extend the described steps.

Software

The implementations in this book series are all based on Java and ImageJ, a widely used programmer-extensible imaging system developed, maintained, and distributed by Wayne Rasband of the National Institutes of Health (NIH).¹ ImageJ is implemented completely in Java and therefore runs on all major platforms. It is widely used because its "plugin"-based architecture enables it to be easily extended. Although all examples run in ImageJ, they have been specifically designed to be easily ported to other environments and programming languages. We chose Java as an implementation language because it is elegant, portable, familiar to many computing students, and more efficient than commonly thought. Note, however, that we incorporate Java purely as an instructional vehicle because precise language semantics are needed eventually to achieve ultimate clarity. Since we stress the simplicity and readability of our programs, this should not be considered production-level but "instructional" software that naturally leaves vast room for improvement and performance optimization. Consequently, this book is not primarily on Java programming nor is it intended to serve as a reference manual for ImageJ.

Online Resources

In support of this book series, the authors maintain a dedicated website that provides supplementary materials, including the complete Java source code,

¹ http://rsb.info.nih.gov/ij/.

Preface vii

the test images used in the examples, and corrections. Readers are invited to visit this site at

www.imagingbook.com

It also makes available additional materials for educators, including a complete set of figures, tables and mathematical elements shown in the text, in a format suitable for easy inclusion in presentations and course notes. Also, as a free add-on to this volume, readers may download a supplementary "bonus chapter" on synthetic noise generation. Any comments, questions, and corrections are welcome and should be addressed to

imagingbook@gmail.com

Acknowledgements

As with its predecessors, this volume would not have been possible without the understanding and steady support of our families. Thanks go to Wayne Rasband (NIH) for continuously improving ImageJ and for his outstanding service to the imaging community. We appreciate the contributions from the many careful readers who have contacted us to suggest new topics, recommend alternative solutions, or to suggest corrections. A special debt of graditude is owed to Stefan Stavrev for his detailed, technical editing of this volume. Finally, we are grateful to Wayne Wheeler for initiating this book series and Simon Rees and his colleagues at Springer's UK and New York offices for their professional support, for the high quality (full-color) print production and the enduring patience with the authors.

Hagenberg, Austria / Washington DC, USA January 2013

Contents

Pr	eface	······································	V
1.	Inti	roduction	1
2.	Automatic Thresholding		
	2.1	Global histogram-based thresholding	6
		2.1.1 Statistical information from the histogram	8
		2.1.2 Simple threshold selection	0
		2.1.3 Iterative threshold selection (ISODATA algorithm) 1	1
		2.1.4 Otsu's method	4
		2.1.5 Maximum entropy thresholding	8
		2.1.6 Minimum error thresholding 2	2
	2.2	Local adaptive thresholding	0
		2.2.1 Bernsen's method	0
		2.2.2 Niblack's method	4
	2.3	Java implementation	5
	2.4	Summary and further reading 4	9
	2.5	Exercises	0
3.	Filt	ers for Color Images 5	1
	3.1	Linear filters	1
		3.1.1 Using monochromatic linear filters on color images 5	2
		3.1.2 Color space considerations 5	5
	3.2	Non-linear color filters 6	6
		3.2.1 Scalar median filter 6	6
		3.2.2 Vector median filter 6	7

		3.2.3	Sharpening vector median filter	69
	3.3	Java i	mplementation	76
	3.4	Furth	er reading	80
	3.5	Exerc	ises	80
4.	Edg	ge Det	ection in Color Images	83
	4.1	Mono	chromatic techniques	84
	4.2	Edges	in vector-valued images	88
		4.2.1	Multi-dimensional gradients	88
		4.2.2	The Jacobian matrix	93
		4.2.3	Squared local contrast	94
		4.2.4	Color edge magnitude	95
		4.2.5	Color edge orientation	97
		4.2.6	Grayscale gradients revisited	99
	4.3	Canny	y edge operator	.03
		4.3.1	Canny edge detector for grayscale images	.03
		4.3.2	Canny edge detector for color images	.05
	4.4	Imple	mentation	15
	4.5	Other	color edge operators1	16
5.	Edg	e-Pre	serving Smoothing Filters	19
	5.1	Kuwa	hara-type filters	20
		5.1.1	Application to color images	23
	5.2	Bilate	ral filter1	26
		5.2.1	Domain vs. range filters	28
		5.2.2	Bilateral filter with Gaussian kernels	31
		5.2.3	Application to color images	32
		5.2.4	Separable implementation	36
		5.2.5	Other implementations and improvements	41
	5.3	Aniso	tropic diffusion filters	43
		5.3.1	Homogeneous diffusion and the heat equation 1	44
		5.3.2	Perona-Malik filter	46
		5.3.3	Perona-Malik filter for color images	49
		5.3.4	Geometry-preserving anisotropic diffusion1	56
		5.3.5	Tschumperlé-Deriche algorithm	57
	5.4	Meası	uring image quality1	61
	5.5	Imple	mentation	64
	5.6	Fronc	igog 1	65

Contents xi

6.	Fou	rier Sl	hape Descriptors	. 169
	6.1	2D bo	undaries in the complex plane	. 169
		6.1.1	Parameterized boundary curves	. 169
		6.1.2	Discrete 2D boundaries	170
	6.2	Discre	ete Fourier transform	. 171
		6.2.1	Forward transform	173
		6.2.2	Inverse Fourier transform (reconstruction)	173
		6.2.3	Periodicity of the DFT spectrum	. 177
		6.2.4	Truncating the DFT spectrum	. 177
	6.3	Geom	etric interpretation of Fourier coefficients	. 179
		6.3.1	G_0 corresponds to the contour's centroid	. 180
		6.3.2	Coefficient G_1 corresponds to a circle	. 181
		6.3.3	Coefficient G_m corresponds to a circle with frequency m	. 182
		6.3.4	Negative frequencies	. 183
		6.3.5	Fourier descriptor pairs correspond to ellipses	183
		6.3.6	Shape reconstruction from truncated Fourier descriptors	. 187
		6.3.7	Fourier descriptors from arbitrary polygons	193
	6.4	Effects	s of geometric transformations	. 195
		6.4.1	Translation	. 197
		6.4.2	Scale change	. 199
		6.4.3	Shape rotation	. 199
		6.4.4	Shifting the contour start position	200
		6.4.5	Effects of phase removal	201
		6.4.6	Direction of contour traversal	203
		6.4.7	Reflection (symmetry)	203
	6.5	Makin	g Fourier descriptors invariant	203
		6.5.1	Scale invariance	204
		6.5.2	Start point invariance	205
		6.5.3	Rotation invariance	208
		6.5.4	Other approaches	209
	6.6	Shape	matching with Fourier descriptors	214
		6.6.1	Magnitude-only matching	214
		6.6.2	Complex (phase-preserving) matching	218
	6.7	Java i	mplementation	219
	6.8	Summ	nary and further reading	225
	6.9	Exerci	ises	. 225
7.	SIF	T—Sc	ale-Invariant Local Features	. 229
	7.1		st points at multiple scales	
		7.1.1	The Laplacian-of-Gaussian (LoG) filter	
			Gaussian scale space	237

		7.1.3 LoG/DoG scale space	
		7.1.5 Scale space implementation in SIFT	248
	7.2	Key point selection and refinement	252
		7.2.1 Local extrema detection	255
		7.2.2 Position refinement	257
		7.2.3 Suppressing responses to edge-like structures	260
	7.3	Creating Local Descriptors	263
		7.3.1 Finding dominant orientations	263
		7.3.2 Descriptor formation	267
	7.4	SIFT algorithm summary	
	7.5	Matching SIFT Features	276
		7.5.1 Feature distance and match quality	285
		7.5.2 Examples	
	7.6	Efficient feature matching	
	7.7	SIFT implementation in Java	
		7.7.1 SIFT feature extraction	
		7.7.2 SIFT feature matching	
	7.8	Exercises	296
Ap	pend	lix	
Α.	Ma	thematical Symbols and Notation	200
В.		·	299
	Vec	•	
		tor Algebra and Calculus Vectors	305
		tor Algebra and Calculus	305
		tor Algebra and Calculus	305 305 306
	B.1	tor Algebra and Calculus Vectors	305 305 306 306
	B.1	tor Algebra and Calculus Vectors	305 305 306 306
	B.1	tor Algebra and Calculus Vectors B.1.1 Column vectors and row vectors B.1.2 Vector length Eigenvectors and eigenvalues	305 305 306 306 307
	B.1 B.2	tor Algebra and Calculus Vectors. B.1.1 Column vectors and row vectors. B.1.2 Vector length Eigenvectors and eigenvalues B.2.1 Eigenvectors of a 2 × 2 matrix	305 305 306 306 307 309
	B.1 B.2	tor Algebra and Calculus Vectors. B.1.1 Column vectors and row vectors. B.1.2 Vector length Eigenvectors and eigenvalues. B.2.1 Eigenvectors of a 2 × 2 matrix Parabolic fitting.	305 305 306 306 306 307 309
	B.1 B.2 B.3	tor Algebra and Calculus Vectors B.1.1 Column vectors and row vectors B.1.2 Vector length Eigenvectors and eigenvalues B.2.1 Eigenvectors of a 2 × 2 matrix Parabolic fitting B.3.1 Fitting a parabolic function to three sample points	305 305 306 306 307 309 309
	B.1 B.2 B.3	tor Algebra and Calculus Vectors. B.1.1 Column vectors and row vectors. B.1.2 Vector length. Eigenvectors and eigenvalues. B.2.1 Eigenvectors of a 2 × 2 matrix. Parabolic fitting B.3.1 Fitting a parabolic function to three sample points B.3.2 Parabolic interpolation	305 306 306 306 307 309 310
	B.1 B.2 B.3	tor Algebra and Calculus Vectors. B.1.1 Column vectors and row vectors. B.1.2 Vector length Eigenvectors and eigenvalues B.2.1 Eigenvectors of a 2 × 2 matrix Parabolic fitting. B.3.1 Fitting a parabolic function to three sample points B.3.2 Parabolic interpolation Vector fields	305 305 306 306 307 309 310 311 312
	B.1 B.2 B.3	tor Algebra and Calculus Vectors. B.1.1 Column vectors and row vectors. B.1.2 Vector length Eigenvectors and eigenvalues. B.2.1 Eigenvectors of a 2 × 2 matrix Parabolic fitting. B.3.1 Fitting a parabolic function to three sample points. B.3.2 Parabolic interpolation. Vector fields B.4.1 Jacobian matrix.	305 306 306 306 307 309 310 311 312
	B.1 B.2 B.3	tor Algebra and Calculus Vectors. B.1.1 Column vectors and row vectors. B.1.2 Vector length Eigenvectors and eigenvalues B.2.1 Eigenvectors of a 2 × 2 matrix Parabolic fitting. B.3.1 Fitting a parabolic function to three sample points B.3.2 Parabolic interpolation Vector fields B.4.1 Jacobian matrix B.4.2 Gradient	305 306 306 306 307 309 310 311 312 312
	B.1 B.2 B.3	tor Algebra and Calculus Vectors. B.1.1 Column vectors and row vectors. B.1.2 Vector length Eigenvectors and eigenvalues B.2.1 Eigenvectors of a 2 × 2 matrix Parabolic fitting. B.3.1 Fitting a parabolic function to three sample points B.3.2 Parabolic interpolation Vector fields B.4.1 Jacobian matrix B.4.2 Gradient B.4.3 Maximum gradient direction.	305 306 306 306 307 309 310 311 312 312
	B.1 B.2 B.3	tor Algebra and Calculus Vectors. B.1.1 Column vectors and row vectors. B.1.2 Vector length Eigenvectors and eigenvalues. B.2.1 Eigenvectors of a 2 × 2 matrix Parabolic fitting. B.3.1 Fitting a parabolic function to three sample points B.3.2 Parabolic interpolation. Vector fields B.4.1 Jacobian matrix B.4.2 Gradient B.4.3 Maximum gradient direction B.4.4 Divergence	305 305 306 306 307 309 310 311 312 313 314 314

Contents xiii

		B.5.1 Estimating the derivatives of a discrete function
C.	Stat	cistical Prerequisites
	C.1	Mean, variance and covariance
	C.2	Covariance matrices
		C.2.1 Example
	C.3	
		C.3.1 Maximum likelihood
		C.3.2 Gaussian mixtures
		C.3.3 Creating Gaussian noise
	C.4	Image quality measures
D.	Car	ssian Filters
Δ.		Cascading Gaussian filters
		Effects of Gaussian filtering in the frequency domain
		LoG-approximation by the difference of two Gaussians (DoG) 335
Ε.	Cole	or Space Transformations
	E.1	RGB/sRGB transformations
	E.2	CIELAB/CIELUV transformations
		E.2.1 CIELAB
		E.2.2 CIELUV
Bib	oliogr	raphy
Ind	lex	